FIGURE 1: Table of Midwest and U.S. regional map (Regions of the United States 2020; for full continental U.S. data, see "natural hazards for continental U.S. states by region" in Supplemental Materials).

Region	Average tornadoes per year	Number of hurricanes per State (1851– 2020)	Number of strong (>3.5) earthquakes per year (1974–2003)	Percentage of state within flood hazard area
		Midwest		
Illinois	54	0	17	12.3%
Indiana	22	0	6	10.3%
lowa	51	0	0	8.2%
Kansas	96	0	4	9.1%
Michigan	16	0	2	4.7%
Minnesota	45	0	2	7.2%
Missouri	45	0	21	15.1%
Nebraska	57	0	8	8.9%
North Dakota	32	0	0	3.4%
Ohio	19	0	8	6.9%
South Dakota	36	0	10	3.9%
Wisconsin	24	0	0	10.3%

FIGURE 2: Engineering tasks and prompts for different natural hazards.

	Tornado	Earthquake	Hurricane	Flood
Initial	Using what you learned	Using what you	Using what you	Using what you
engineering	about severe weather	learned about waves	learned about	learned about severe
prompt	and tornadoes, you	and earthquakes,	severe weather and	floods and floodplains,
	will design a tornado-	you will design an	hurricanes, you will	you will design a
	proof structure that	earthquake-proof	design a hurricane-	flood-proof structure
	is a minimum of 1 ft.	structure that is a	proof structure that	that is a maximum
	high, 1 ft. wide, and 1 ft.	minimum of 1 ft. high,	is a minimum of 1	of 1 ft. high, 1 ft.
	deep. This "tornado" will	1 ft. wide, and 1 ft.	ft. high, 1 ft. wide,	wide, and 1 ft. deep.
	be simulated with two	deep. Your structure	and 1 ft. deep. This	Your structure must
	fans: one placed one ft.	must be able to hold	"hurricane" will be	be able to hold the
	away from, and blowing	the weight of a tennis	simulated with a	weight of a tennis ball.
	directly on, the roof; one	ball. Your structure	fan on medium for	Your structure will be
	placed 1 ft. away and	will be transferred to	30 seconds, with	moved to and placed
	blowing directly on one	a piece of cardboard.	the fan placed 1 ft.	in a clear bin. The bin
	side of the house, which	The "earthquake" will	from your structure	will be propped up on
	your teacher will select	be simulated by your	at the location	one end to a height
	at random. The fans	teacher consistently	of your teacher's	of your teacher's
	will begin on low for 10	and gently shaking	choosing. For the	choosing. You will
	seconds, increase to	the cardboard for 30	second 15 seconds	place your structure in
	medium for 10 seconds,	seconds.	of the hurricane,	the middle of the bin,
	and then move to		precipitation will	and the "flood" will be
	high for 10 seconds to		be simulated via a	simulated with water
	simulate three different		watering can. Three	running from one end
	levels of tornado		small items will be	of the bin to the other
	damage. During the		dropped on the roof to	end for 30 seconds.
	high setting, three small		simulate flying debris.	
	items will be dropped			
	on the roof to simulate			
	flying debris.			

FIGURE 3: Natural hazards assessment (Regions of the United States 2020).

1. Locations and causes of hazards: For the following three questions, complete them all. Mark on the map provided in which region you would expect the natural hazard to occur. There may be more than one right answer!

- a. Write "tornado" in the region most likely for a tornado to occur. Write why tornadoes occur here.
- b. Write "hurricane" in the region most affected by hurricanes. Write why this area is most affected.
- c. Write "flood" in an area where a flood may occur. Write why a flood may occur there.
- d. Write "earthquake" in the region most likely to have an earthquake. Write why an earthquake would occur there.
- 2. Preparing for a hazard: For the following four scenarios, pick one and explain what you would do to prepare for this scenario. Then, predict the damage that the scenario will cause.
 - a. You are sitting in your home, which has an upstairs, roof access, and a basement. Suddenly the tornado sirens start going off. You check your phone and see that a tornado is headed your way! The winds are up to 140 mph.
 - b. You are outside playing basketball when your grandmother comes out and tells you there is a Category 1 hurricane expected in the area, but they are not asking residents to evacuate. Your house has an upstairs and roof access.
 - c. You are inside watching your favorite TV show when it starts to rain very heavily outside. After a few minutes you look outside and see that the streets have already completely flooded! The news gives a flash flood warning.
 - d. You live in an earthquake-prone area. Scientists predict an earthquake with a potential magnitude of 6 on the Richter scale will happen very soon.
- 3. Designing structures: Write a short reflection on the success of your group's structure. Make sure to include:
 - a. If the scenario in Question 2 happened, how likely is it that your structure would have survived?
 - b. What went well in your designs?
 - c. What did not go well?
 - d. What changes would you make to improve your structure?
- 4. Nature of science and engineering
 - a. What are two ways you acted like scientists and engineers throughout our natural hazards lessons?

FIGURE 4: Learning targets and standards-based grading rubric (adapted from Wilcox 2011).

Learning targets

- Describe the patterns of natural disasters and explain how we can forecast them.
- Explain the causes of natural hazards.
- Describe how to prepare for a natural disaster.
- Analyze and interpret data to determine the effectiveness of a design.
- Articulate how we acted like scientists and engineers.

Standard score	Missing or incomplete	2	2.5	3	3.5	4
Level of	Cannot					
understanding	assess	Beginning	Developing	Capable	Strong	Exceptional
Teacher	The student	Demonstrates	Demonstrates	Demonstrates	Demonstrates	Demonstrates
language	did not	little	partial	understanding	understanding,	a complete
	turn in or	understanding	understanding	with minor	but has little	understating
	complete	alone, but	with	gaps with little	application and/	through
	the work.	partially	significant	application. No	or minor errors.	applying their
		understands	gaps and	major errors or		knowledge.
		with help.	minimal	omissions are		
			application.	present.		
Student	l didn't	l need lots of	l need some	l have some	l'm almost	l understand
language	do this	help.	help.	questions.	there.	this very well
	standard.					and can apply
						it to new
						situations.