Table 1. NGSS and CCSS Standards

NGSS Physical Science	CCSS FLA
HS-PS2-2 Use mathematical	CCSS FLA-LITERACY WHST 11-12 1 Write
representations to support the claim that	arguments focused on discipline-specific content
the total momentum of a system of objects	arguments rocused on discipline-specific content.
is conserved when there is no net force on	
the system	
HS-PS3-1 Create a computational model	CCSS FLA_LITERACY WHST 11-12 / Produce clear
to calculate the change in the energy of	and coherent writing in which the development
one component in a system when the	organization and style are appropriate to task nurnose
change in energy of the other	and audience
component(s) and energy flows in and out	and addrence.
of the system are known	
NGSS Disciplinary Core Ideas	
DS2 A: Foreas and Motion	
Momentum is defined for a	
• Womentum is defined for a	
the mass times the velocity of the	
object	
• If a system interacts with objects	
• If a system incracts with objects	
of the system can change:	
however, any such change is	
balanced by changes in the	
momentum of objects outside the	
system	
PS3 A: Definitions of Energy	
• Energy is a quantitative property of	
a system that depends on the	
motion and interactions of matter	
and radiation within that system	
That there is a single quantity	
called energy is due to the fact that	
a system's total energy is	
conserved, even as, within the	
system, energy is continually	
transferred from one object to	
another and between its various	
possible forms.	
PS3.B: Conservation of Energy and	
Energy Transfer	
• Conservation of energy means that	
the total change of energy in any	
system is always equal to the total	
energy transferred into or out of	
the system.	

• Energy cannot be created or	
destroyed, but it can be transported	
from one place to another and	
transferred between systems.	
• Mathematical expressions, which	
quantify how the stored energy in a	
system depends on its	
configuration (e.g. relative	
positions of charged particles,	
compression of a spring) and how	
kinetic energy depends on mass	
and speed, allow the concept of	
conservation of energy to be used	
to predict and describe system	
behavior.	
• The availability of energy limits	
what can occur in any system.	
NGSS Science and Engineering Practices	
3. Planning and carrying out investigations	
4. Analyzing and interpreting data	
5. Using mathematics and computational	
thinking	
6. Constructing explanations (for science)	
and designing solutions (for engineering)	
7. Engaging in argument from evidence	
8. Obtaining, evaluating, and	
communicating information	
NGSS Crosscutting Concepts	
2. Cause and Effect	
4. Systems and System Models	
5. Energy and Matter	