
SJS PD Group Project Examples

Group 1

WHAT CAN STAR COLOR TELL US ABOUT AGE OF A CLUSTER?

Blue Stars Red Stars

Yellow Stars

What can we learn about star clusters by comparing individual stars through different filters?

Let's compare globular clusters and open clusters.

Hypothesis: Globular clusters are old. They will contain more red stars (that is stars that are older) than blue stars. Open clusters will not follow this trend. Visual inspection will be reasonably reliable in determining "old or young" clusters.

Method

- Select 1 Open Cluster and 1 Globular Cluster each.
- Set up each Optical Observation on a telescope with 3 different color filters.
- Using Astro Image, produce color images. Visually identify any prominent star color trends.
- Verify visual determination of selected Red, Yellow and/or Blue Stars by photometer measurements in Afterglow.
 - Record Flux in each of the 3 stars for each filter.
 - Compare Photometer Flux results for each star to the color image to see if flux results match the color determinations made from visual inspection.
- Record Star Cluster approximate ages to determine if the dominantly observed star color correlates correctly to our predictions based on star flux and color.

Source Age	/ Selected Star Coordinates	Visual Color Observation of Star	GenB Star Flux	GenG Star Flux	GenR Star Flux	Does our visual identification match the flux readings?
<u>M44 -</u> 650	1: 466.49,573.49	Yellow	5,877,071	6,160,753	6,714,667	More red than yellow.
Million Mostly	2:786.51,244.45	Yellow	5,193,411	5,744,836	6,148,554	More red than yellow.
blue cluster.	3: 510.17,218.92	Blue	4,046,350	3,451,030 2,67	2,671,442	Confirmed
	4: 252.49,697.83	Blue	6,235,34	5,600,687	4,810,980	Confirmed
<u> M50 –</u> 78 Millio	1: 787.18,740.30	Yellow	918,047	1,153,07	1,553,553	More red than yellow.
Mostly blue/yel	2: 741.92,506.53	Yellow	37,862	71,175	145,128	More red than yellow.
w cluste	r. 3: 456.14,246.53	Yellow	242,126	504,092	837,195	More red than yellow.
	4: 422.10,537.41	Blue	696,855	572,332	428,157	Confirmed
	5: 494.03,650.88	Blue	1,191,789	1,016,317	866,543	Confirmed
M35- 100	1: 987.49, 709.22	Yellow/Blue	3,083,390	2,766,233	2,411,664	More blue than yellow.
Million Mostly yellow cluster.	2: 667.50, 157.99	Red	2,399,403	2,676,870	2,990,398	Confirmed

Source Name / Age/Image	Selected Star Coordinates	Visual Color of Star	GenB Star Flux	GenG Star Flux	GenR Star Flux	Does our results predict the Cluster Age?
M5 – 13 Billion	1: 632.01,345.92	Red/Yellow	6,431	11,080	19,484	Confirmed
Mostly red cluster.	2: 612.61,696.38	Yellow	602	1500	1274	Confirmed
	3: 459.85,622.24	Red/Yellow	5,682	8,466	13,089	More red than yellow.
M10-11.4 Billion	1: 626.81,512.60	Red/Yellow	50,503	83,778	136,058	More red than yellow.
Mostly red cluster.	2: 390.59,524.53	Yellow	61,182	105,125	61,182	Confirmed
	3: 416.12,477.59	Yellow	21,297	35,737	61,065	More red than yellow.
	4: 343·57 ₁ 594·27	Blue	24,573	-2609	-1903	Confirmed – Anomaly due to presence of "Blue Straggler" (results from star interaction in dense cluster, not actual blue star).
M68 – 11.2 Billion	1: 205.92,698.73	Red	7,198	24,006	106,422	Confirmed
Mostly red cluster.	2: 232.74,702.05	Yellow/Whit e	66,329	83,390	112,053	More red than yellow.

Trends & Results


- Open Clusters had stars more visually discreet stars than Globular Clusters.
- As a group, we incorrectly made a visual color assignment to stars 50% of the time.
- Batch photometry is the key tool for identifying a star in all three filter Afterglow images when the star is only easily identifiable in one.

Our hypothesis is partially confirmed: Open Clusters contained more blue and yellow stars, while Globular Clusters contained more red stars. However, visual inspection was not the most reliable color assignment method.

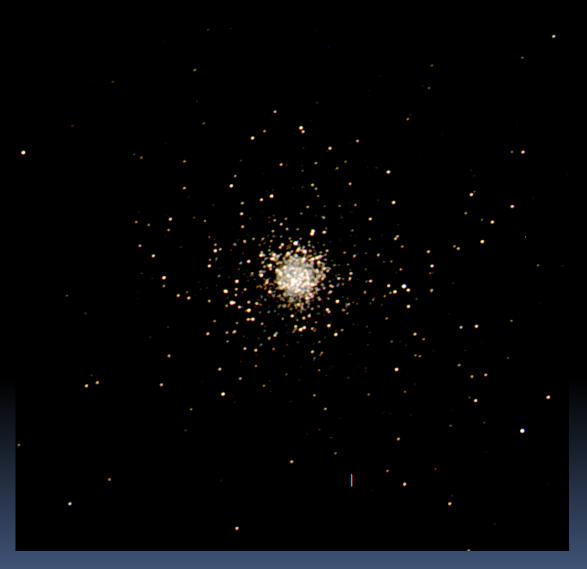
Further Questions

- If we were to repeat our observations and produce additional color images, could a change in the atmospheric conditions change our color identity reliability?
- Would we have the same success rate visually identifying star color in a nebula?
- Could we use predominate star color to determine relative age for galaxies as well?
- Can the approximate age of the star cluster be determined by the highest red or blue star flux readings?

M44 – the Beehive Cluster

Blue/yellow stars dominant – indicates younger cluster.

M50 – Open Cluster

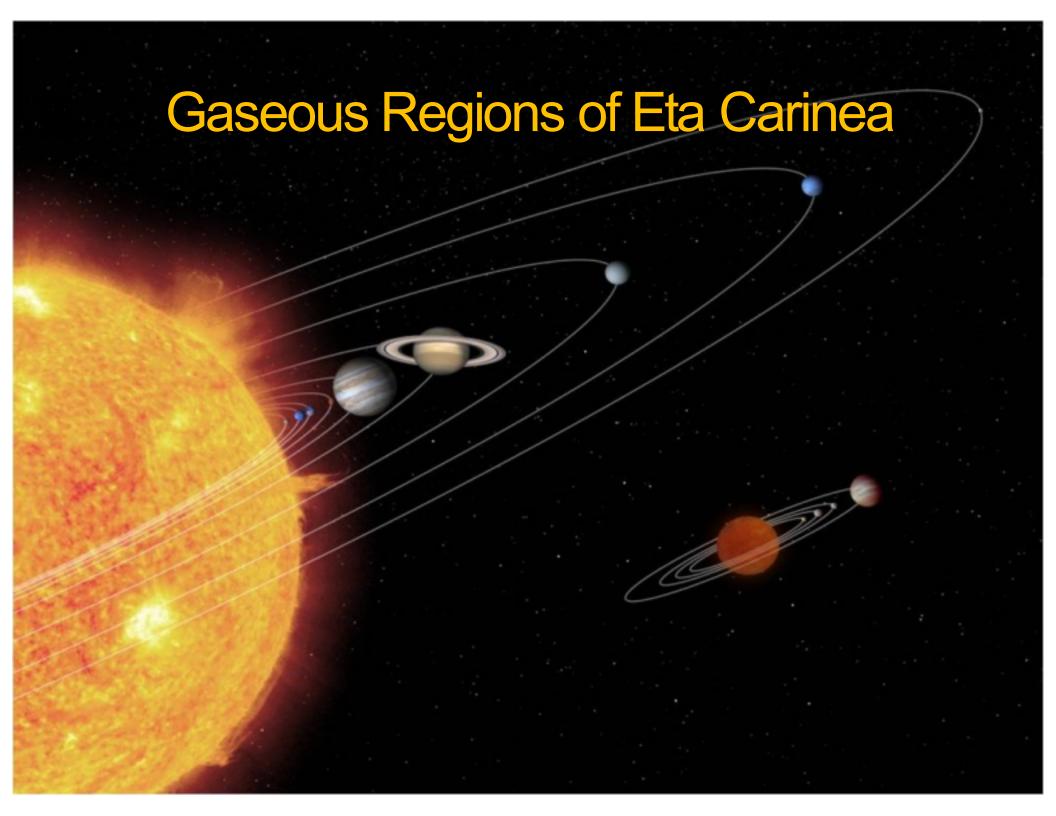

Blue/yellow stars dominant – indicates younger cluster.

<u>M</u>35

Blue/yellow stars dominant – indicates younger cluster.

Red/yellow stars dominant – indicates older cluster.

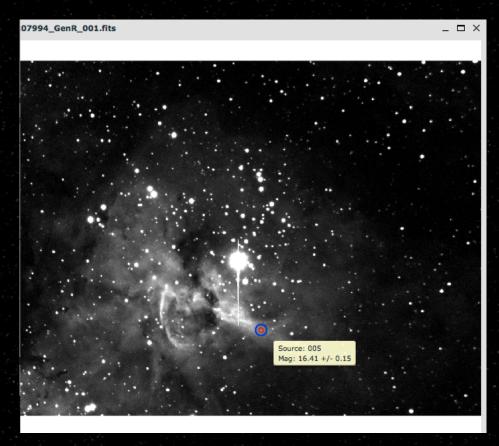
<u>M10</u>


Red/yellow stars dominant – indicates older cluster.

<u>M68</u>

Red/yellow stars dominant – indicates older cluster.

Group 2


Observation

When viewing R-G-B photos of Eta Carinea, we noticed that the gaseous regions were brightest with the red filter:

Observation Validation

Through the photometry tool in Afterglow, we verified the observation:

	Red	Green	Blue
Spot 1	16.41	18.37	18.00
Spot 2	16.02	16.70	17.95

Hypothesis

The source of energy for the gaseous regions of eta carinea is an external thermal heating process, not something generated by the cloud itself.

If the cloud were generating its own energy, we would expect it to register more on the hotter blue end of the scale. The observation that it is relatively red and cool leads us to believe it is rather reflecting the heat of another highly energetic object.

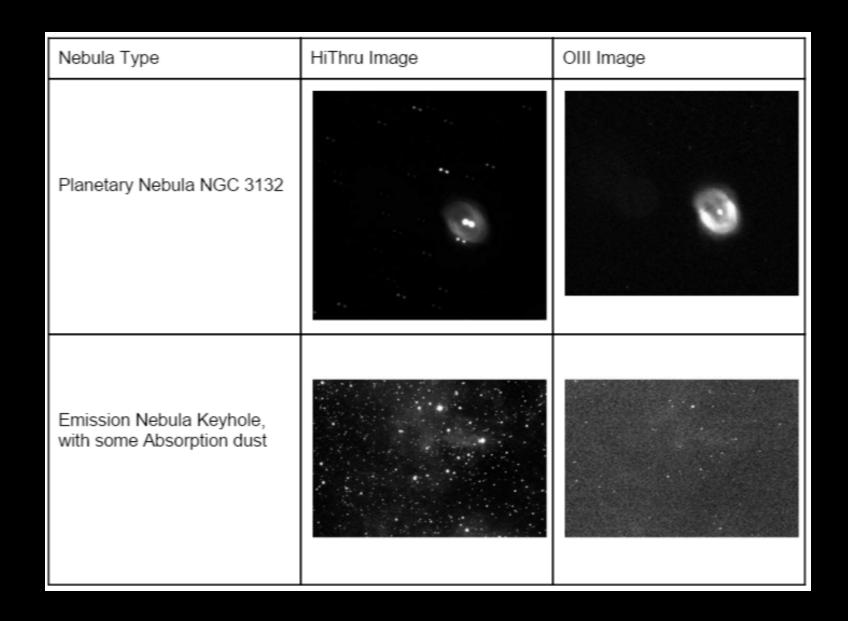
Next Steps

Evaluate images using filters outside the visible spectrum.

We would expect that if the object is being heated via thermal radiation, it will register strongly on the infrared and radio spectrums.

Group 3

The Presence of Oxygen in Various Nebula: A Skynet Junior Scholars Project


Question

Which nebula have a strong presence of oxygen, which ones do not?

<u>Criteria</u>

- Does the nebula standout better, worse, or the same when viewed through an OIII filter vs a standard, clear luminosity (HiThru) filter.
- If the answer is worse, then there is little to no oxygen present.

Nebula Type	HiThru Image	OIII Image
Emission Nebula NGC 2264		
Supernova Remnant NGC 2736		

Nebula Type	HiThru Image	OIII Image	
Planetary Nebula NGC 5189			
Reflection Nebula M78with artifact of planetary nebula from previous userstill showing up 5 minutes later			

Conclusion: Planetary Nebula have the strongest indication of the presence of oxygen based on the overall brightness/visibility in the OIII images. Supernova remnant have amounts of oxygen as well. Emission and reflection nebula, at the ones we observed, do not have much OIII at all.

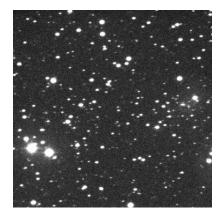
Question: How do images of nebulae change through different telescopes?

Exploring Field of View, and filters

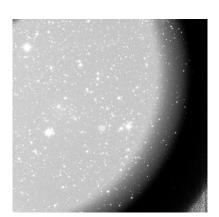
Chuck, Bonnie, Lynne

Procedure

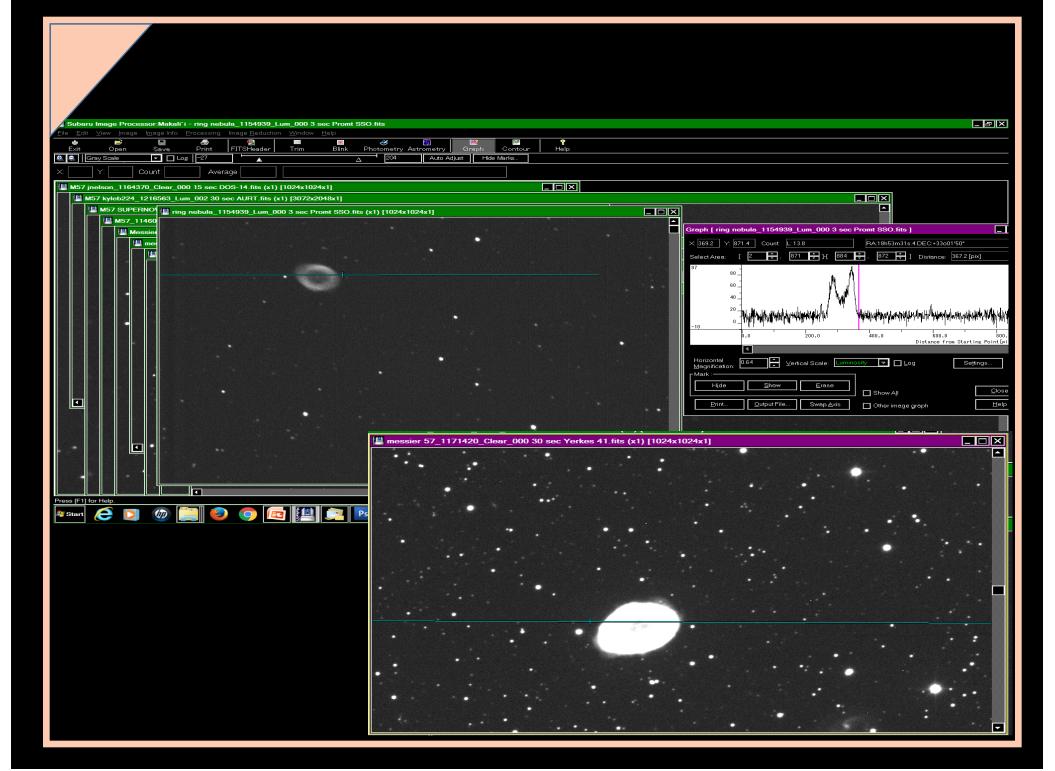
- Pick a nebula from the Sharpless Catalog:
- https://en.wikipedia.org/wiki/Sharpless_catalog
- Collect Image through multiple telescopes, with different filters.
- Exposure time on all images will be 30 seconds.
- Search for other images of nebula in Group Images, or Collaboration Images.
- Use Afterglow program or other image processing program to measure the diameter of the object and horizontal field of view
- Create a ratio between the two for each telescope.


objects selected:

Bonnie: Orion Nebula


Lynne: Ring Nebula

Chuck SH-2


Chuck: Sh2-271 Flame Nebula

	Yerkes 41	Prompt 1	Prompt-SSO	DSO- 14	Etc.	R-COP	
Ring Nebula	ratio	ratio	ratio				
Sh2-271 Flame	27.6/ 1011.5 (0.027)	29.7/ 1007.8 (0.029)				62.3/ 2167.6 (0.028)	

Telescope	AURT	DSC -14	DSO-17	GORT	Promt SSO	Yerkes 41
Filter	Clear	Clear (Hthru)		Green	Clear (Lum)	Clear
Exposure	30	3		80	3	30
Ring	81	270		420	467	662
Full imate	1526	883		1020	884	1021
Ratio	.057	.305		.510	.198	.154
	5	2		1	3	4

If we had more time....

Combine 3 fits images from each scope to get a more precise view.