Skip to main content
 

Commentary

Global Environmental Issues and the Circular Bioeconomy

The Science Teacher—April/May 2020 (Volume 87, Issue 8)

By ROBERT SMITH AND MARK RUDNICKI

Preparing high school students

A superb example of expertly developed teaching materials aimed at high school students has emerged from Finland and is publicly available. Finland, consistently a globally top-ranked educational system, already focuses on sustainability and active citizenship—themes that are elevated in the development of these circular economy classroom tools. Dr. Leyla Acaroglu is a bit of a rock star in the sustainability design and education world by (among other things) being named the 2016 Champion of the Earth (Science and Innovation) by the United Nations Environment Program. She led the development of this educational resource that integrates circular thinking into the classroom in a rigorous, compelling way. The materials include three modules (Linear to Circular, Systems and Sustainability, and Design and Creativity) with accompanying workbooks, videos, and other supporting materials, which can be accessed for free at www.circularclassroom.com.

Preparing high school students in traditional fields of knowledge with a circular bioeconomy perspective will be a great step forward. However, to address the needs of the circular bioeconomy, multidisciplinary education and research must move forward to raise awareness on how peoples’ decisions impact all aspects of consumption. Part of the impetus to move forward will be supplied by the students’ expectations and demands. Students educated in the principles of the circular economy are expected to demand dedicated programs and applications of traditional disciplines to the circular economy.

Our educational systems (high school and university) must also adopt circular thinking and move away from traditional silo-based training where education is linear. We need to move toward more cross-pollination of classes in which students can see the interrelationships between the basic disciplines of math, chemistry, biology, business, and environmental science. To tackle the issues of tomorrow, we cannot continue to use the methods of the past. Only this multidisciplinary approach to education will prepare students to deal with the challenges of the future and be able to work in the circular bioeconomy.

Robert Smith (rsmith4@vt.edu) is Associate Dean for Engagement and Professor of Sustainable Biomaterials at Virginia Tech, Blacksburg, VA. Mark Rudnicki (mrudnick@mtu.edu) is Professor of Practice in the College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI.

Climate Change Teaching Strategies High School

Asset 2