This week in education news, California schools preparing to ramp up course offerings and equip teachers to lead computer science courses; teaching students together and having them help one another learn may have more benefit to them and society than separating them by abilities; President announces the recipients of the Presidential Early Career Award for Scientists and Engineers; 2/3rds of American employees regret their college degrees; schools across the U.S. are grappling with how to incorporate the study of climate change into the classroom as its proximity and perils grow ever more apparent; and ‘improvement science’ helps school districts succeed at new initiatives.
As California pushes to increase access to computer science education for K-12 students, schools across the state this summer are preparing to ramp up course offerings and equip teachers to lead computer science courses. Read the article featured in EdSource.
Educators can learn valuable lessons about the purpose and ultimate impact of education on society as a whole from the experiences of veteran African American teachers, who have historically viewed schools as a “public good to expand citizenship, equity, and collective responsibility” rather than an “engine for individual social mobility,” Kristina Rizga, author of “Mission High: One School, How Experts Tried to Fail It, and the Students and Teachers Who Made It Triumph,” contends in an article for The Atlantic. Read the brief featured in Education DIVE.
President Donald J. Trump announced the recipients of the Presidential Early Career Award for Scientists and Engineers (PECASE). The PECASE is the highest honor bestowed by the United States Government to outstanding scientists and engineers who are beginning their independent research careers and who show exceptional promise for leadership in science and technology. Read the press release.
A college education is still considered a pathway to higher lifetime earnings and gainful employment for Americans. Nevertheless, two-thirds of employees report having regrets when it comes to their advanced degrees, according to a PayScale survey of 248,000 respondents this past spring recently released. Read the article featured on CBSNews.com.
Their training doesn’t cover it, many textbooks don’t touch it, but teachers are taking on climate change anyway. Read the article featured in the Hechinger Report.
School districts are pushing career exploration into middle and lower grades, convinced the preparation necessary for tomorrow’s jobs needs to begin earlier. Read the article featured in the Hechinger Report.
Administrators can take advantage of the summer months and build a good work environment by showing appreciation for teachers. Simple gestures go a long way towards keeping teachers connected and excited to return in the fall, Tracey Smith, principal of Brookwood Elementary in Georgia, writes for eSchool News. Read the brief featured in Education DIVE.
An approach to problem-solving called improvement science may give district and school initiatives a better chance at succeeding. Read the article featured in edutopia.
Stay tuned for next week’s top education news stories.
The Communication, Legislative & Public Affairs (CLPA) team strives to keep NSTA members, teachers, science education leaders, and the general public informed about NSTA programs, products, and services and key science education issues and legislation. In the association’s role as the national voice for science education, its CLPA team actively promotes NSTA’s positions on science education issues and communicates key NSTA messages to essential audiences.
This week in education news, California schools preparing to ramp up course offerings and equip teachers to lead computer science courses; teaching students together and having them help one another learn may have more benefit to them and society than separating them by abilities; President announces the recipients of the Presidential Early Career Award for Scientists and Engineers; 2/3rds of American employees
Some plants can be started from seed in the garden in midsummer’s warmest weather and still grow plants that reach maturity before the first killing frost in the fall. With multiple experiences handling and planting seeds children grow their understanding of the function of seeds. “Plants also have different parts (roots, stems, leaves, flowers, fruits) that help them survive, grow, and produce more plants” (NRC, page 144). In the July 2018 Early Years column I wrote about investigating seed sprouting with children to begin learning about plants’ needs for sustaining growth, part of the NGSS Disciplinary Core Idea, LS1.C: Organization for matter and energy flow in organisms.
To learn which seeds to plant outdoors now, ask the families of children attending your program in summer to share their gardening experiences. Other places to find experienced or expert gardeners include the local farmers’ market, the county extension service, Master Gardener program, or a high school National FFA Organization. Consult seed planting calendar guides from local extension services and seed companies and have children help determine which seeds to start in which month in your locality.
Planting seeds in containers indoors makes it easy to view the sprouting process and tiny seedling structures. If seedlings get enough light from the sun, or from “grow lights,” they may be strong enough to transplant into the garden.
Children can help plan if they have time and experiences to understand the needs of plants.
Garden planning steps documented by teacher Sue Nellor
With the average first killing frost in mind, I’m planning to plant bush bean seeds in the soil in mid August, and put in some collard seedlings to overwinter. The beans take from 50-60 days to maturity—enough time for children in a year-round program to plant, tend, harvest, and taste their own produce. Hopefully the collards will host the eggs of Cabbage white butterflies (Pieris rapae), and when they hatch, feed the larvae, providing an observational experience for children next spring. See the April 2007 Early Years column (free for non-members!) for more on the relationship between Pieris rapae and plants of the Cruciferae (Brassicaceae) family.
Some plants can be started from seed in the garden in midsummer’s warmest weather and still grow plants that reach maturity before the first killing frost in the fall. With multiple experiences handling and planting seeds children grow their understanding of the function of seeds.
How does one model a 5E lesson plan for each topic covered when teaching a split grade level? — C., Illinois
Split classes can be very challenging, particularly if they have drastically different curricula. However, I believe you can manage better if your lessons use a three-dimensional approach. Instead of content topics, you can structure your 5E (Engage-Explore-Explain-Elaborate-Evaluate) lessons around a cross-cutting theme, a core idea, or a scientific practice common to all science curricula. What would differ in your class is what the students “Explore” about the common theme, idea or practice. I believe the core ideas in each subject area would be the easiest to focus on but it would be powerful to wrap a lesson around a science practice like engaging in arguments based on evidence.
Have the students from both grades share what they learned and ask questions that arose from their explorations. This flows nicely to the “Explanation” and “Elaboration” stages of a 5E lesson. Consider pairing students across the grades and incorporating some peer teaching and evaluation.
You can structure formative and summative evaluations around their understanding of the themes, core ideas, and practices by how they apply the knowledge of the topics from the lesson. You might be able to create tests that ask the same questions but would have slightly different answers depending on the exploration used in each grade level.
Please visit NGSS@NSTA (https://ngss.nsta.org/) for ideas, lessons, and workshops involving 3D learning.
Some children feel a kinship with all kinds of living things. They may reach out to touch a bumble bee on a flower or hug a worm too tightly. Touching a bee may be fine if the temperature is so cold it has paused on the flower overnight waiting for morning’s warming sun but I do want children to be aware of the potential hazards of handling small animals.
Promoting caution but not fear while observing small animals supports all children. We can plan opportunities for observation, where children whose affinity for living organisms is still developing can see while maintaining a comfortable distance. Confining small animals in containers for brief periods of observation is one way to provide that distance. Some children eagerly look at books about animals, gaining a familiarity that can make first hand experiences more comfortable.
Observing children, and thinking about what their actions tell us they understand, is the beginning of formative assessment—assessment that informs the direction and progress of teaching. Documenting other ways of knowing children’s thinking, such as, their drawings or conversations during book read-aloud, as well as our observations, guides our next steps in planning lessons. Our collected knowledge and documentation of children’s actions, thinking, and work becomes formative assessment when we “use the information to inform instruction, plan interactions that scaffold learning, and communicate children’s progress to them, their families, and others” (Riley-Ayers in Bohart & Procopio 2018).
Formative assessment systems can be very individual and a strength-based way of documenting and identifying children’s development. Instead of saying, “This child is afraid of bees,” I might say, “This child is cautiously observing bees while maintaining a distance that feels comfortable.” Reviewing the formative assessment documentation supports children’s reflection on their ideas. Hoisington (2016) writes, “Get ALL of the children’s science ideas out on the table, Provide opportunities for children to investigate their ideas, Facilitate children’s reflection on the evidence.” Follow up activities with discussion to find out what children think they know about how animals get the food and other things they need. The NGSS Appendix E: Progressions Within the Next Generation Science Standards describes how children’s beginning understandings become more sophisticated as they grow and learn.
References
Riley-Ayers, Shannon. 2018. Introduction to Spotlight on Young Children: Observation and Assessment by H. Bohart and R. Procopio. NAEYC.
If you ask students where their food comes from, they will most likely answer, “the grocery store.” Raise student awareness of the agricultural industry and our food supply chain with the articles found in this issue of Science Scope.
If you ask students where their food comes from, they will most likely answer, “the grocery store.” Raise student awareness of the agricultural industry and our food supply chain with the articles found in this issue of Science Scope.
If you ask students where their food comes from, they will most likely answer, “the grocery store.” Raise student awareness of the agricultural industry and our food supply chain with the articles found in this issue of Science Scope.
Research and Teaching
The Effect of Science Education Classes on Preservice Elementary Teachers’ Attitudes About Science
This study examined the attitudes toward science of elementary preservice teachers at a large public university in Texas. The study utilized a version of the well-established Test of ScienceRelated Attitudes (TOSRA) to assess the preservice elementary teachers’ attitudes toward science before and after completing a senior-level science teaching methods course. The coursework involved an integrated science curriculum emphasizing science inquiry, constructivist theory, lesson planning, assessments, and instructional strategies. Statistical analyses, specifically T-test and Hedges’ g, showed significant gains in the elementary preservice teachers’ attitudes toward science in four of the seven TOSRA scales (Attitude to Scientific Inquiry, Adoption of Scientific Attitudes, Leisure Interest in Science, and Career Interest in Science). In contrast, scores in two of the TOSRA scales (Social Implications of Science and Normality of Scientists) indicated a decrease in attitudes toward science among the elementary preservice teachers. Overall, the results implied that the science method instruction is having a positive effect on the elementary preservice teachers.
This study examined the attitudes toward science of elementary preservice teachers at a large public university in Texas. The study utilized a version of the well-established Test of ScienceRelated Attitudes (TOSRA) to assess the preservice elementary teachers’ attitudes toward science before and after completing a senior-level science teaching methods course. The coursework involved an integrated science curriculum emphasizing science inquiry, constructivist theory, lesson planning, assessments, and instructional strategies.
This study examined the attitudes toward science of elementary preservice teachers at a large public university in Texas. The study utilized a version of the well-established Test of ScienceRelated Attitudes (TOSRA) to assess the preservice elementary teachers’ attitudes toward science before and after completing a senior-level science teaching methods course. The coursework involved an integrated science curriculum emphasizing science inquiry, constructivist theory, lesson planning, assessments, and instructional strategies.
Interdisciplinary Ideas: Engineering design with MIT App Inventor
Many of the girls in my kindergarten class are showing a lot of interest in space. Space is not part of my curriculum, so how would you recommend I address their interest? Can you recommend any resources? —M., New Mexico
Curiosity, asking questions, looking for answers are all part of the nature of science and all young children have these in abundance! While you need to focus on certain topics in your science curriculum, do not fear using other topics to get at the nature of science or to quench students’ thirst for knowledge.
Space! What a wonderful topic. There are some simple ways that you can foster interest without stealing away from your curriculum topics:
Daily science announcements: include the moon phase, celestial events, and the location of planets.
Moon observations: observe the moon during recess or in the evening and report to the class. Have a picture of the current moon phase posted in the class.
Take home activities: There are many planispheres (star finders) that you can download for free and build, calendars of celestial events, and moon phase handouts.
Astronomy apps: Use these in class and send home a list of resources for families to use. There are many excellent, free starfinder and astronomy apps available.
Hold a family astronomy night: almost all local astronomy clubs will help set up a viewing night for you.
Many of the girls in my kindergarten class are showing a lot of interest in space. Space is not part of my curriculum, so how would you recommend I address their interest? Can you recommend any resources? —M., New Mexico
Fourth graders at Liberty Elementary School in Tucson, Arizona, build a scale BMX track as part of the USA BMX Foundation’s Track Modeling Program. Photo courtesy of Sandra Havelka
Teaching students science, technology, engineering, and math (STEM) by connecting it with bicycle motocross (BMX), closed-course bike racing over natural or simulated rough terrain, is possible with programs from the American Bicycle Association’s USA BMX philanthropic arm, the USA BMX Foundation, located in Gilbert, Arizona. Marianne Landrith, gifted education teacher for the Sunnyside Unified School District in Tucson, Arizona, says she discovered the foundation’s educational programs in 2017 when a student was working on “an inquiry project on helmet safety in extreme sports. We had to find resources for Daniel!”
Landrith contacted Mike Duvarney, executive director of the USA BMX Foundation. Through the foundation’s Motivational Speaking program, Duvarney arranged for Olympic BMX racer Donny Robinson to visit Daniel’s school. “Olympians can come to schools anywhere in the country [at no charge]. They talk about how much STEM is involved in the field and the tools used. Each Olympian talks about failure and staying motivated through the lens of cycling,” Duvarney relates.
“We received lots of great information for Daniel,” Landrith recalls. “Donny rode a bike into the classroom, talked about goals and perseverance, and [answered students’ questions]. [The foundation] gave Daniel a BMX bike. [The school has] 92% [of its students receiving] free or reduced-price lunch, so it was very generous of them to do this.”
With funding from the district’s Jacob K. Javits Gifted and Talented Students Education Program grant, which Landrith coordinates, she was able to bring another USA BMX Foundation STEM program, the Track Modeling Program, to Tucson schools. “We started with classes with a high number of gifted students in them, and the program expanded from there [to include all students],” she explains.
Schools that don’t have grant funding can receive help from USA BMX Foundation in finding funding sources, and may be matched with sponsors, Duvarney points out.
Designed for fourth graders, the weeklong/25-hour Track Modeling Program supports the Next Generation Science Standards (NGSS) and gives students an opportunity to conceptualize, design, and build a scale BMX track. “Students talk to a track builder and learn about which track features go well together [and] the engineering behind them. They are able to Skype with an Olympian. Then [students visit a local track] for themselves…They [get to] ride [bikes] on the track,” says Duvarney. Back at their schools, they design their own tracks and work in groups to incorporate their individual designs “into one final track design,” he adds.
“We spend an hour with teachers to help them teach it, an hour-long phone conversation,” Duvarney reports. “All supplies [for the program], including dirt, are delivered to the school. It’s truly a kit.”
“Students are creating something from nothing, engaging their creativity,” Landrith asserts. “They learn how to apply the information they heard [at the track] to their new creation. They gather information from their own experience riding on the track several times, which helps them make the track the right size.” Making tracks to scale “is challenging because fourth graders haven’t been exposed to ratios and scale,” she adds.
“They work in teams and learn to collaborate, how to have good discussions and compromise, how to divide tasks evenly. They get to play in dirt and be messy, which can bring science to life. And [Track Modeling] gets them outside and exercising. So many of our students have never ridden a bike, so they learn how to ride one,” Landrith relates. The physical education teachers, she adds, “get the students on bikes three weeks before the trip and make sure the students are comfortable and know how [to use the hand brake].”
“People think of BMX as flips and tricks, but there are two types of BMX: freestyle (flips and tricks) and racing. We are BMX racing. We take safety very seriously and ensure that all precautions are followed. Students must wear a helmet, a long-sleeved shirt, and pants, along with closed-toe shoes,” Duvarney explains.
Craycroft Elementary School in Tucson is in its second year of using the Track Modeling Program. Principal Jim Ridge says the program’s “project-based, inquiry approach” supports “gifted students’ strengths and supports all of our students [as well]…Our students took agency and created their tracks based on their learning and the resources [provided]. This was an engineering project [that taught students about concepts like] soil compaction, ratios, and elements of design that could be produced on a real track…Students learn about how water is important in track design; in the new Arizona standards, water is a big content piece.”
Ridge adds, “None of the teachers are experts in track design and BMX, but the program doesn’t require it…We had access to experts from the field: riders, engineers, and designers whose support helped move the project forward.”
Cheryl Lane and Alison Scranton, fourth-grade teachers at Michael G. Wickman Elementary School in Chino Hills, California, taught the Track Modeling program with three of their fourth-grade colleagues. “The engineering project was clearly outlined and easy to follow. It was great! Alison was the only one who had experience with the BMX sport, but we all were able to do the project,” asserts Lane.
“The only tweak [we made was] timing. The program was designed for one week; we spaced the activities out over a two-week time period. That worked perfectly,” Scranton observes.
“We are in the beginning stages of NGSS implementation, but this gave us an opportunity to dive into the three dimensions of NGSS. We were able to design [lessons] through project-based learning and connect related curriculum. Track Modeling helped us design effective curriculum,” say Lane and Scranton.
The program also increased students’ environmental awareness. According to Lane and Scranton, students had to consider “where to build a track and the environmental impact. Is there enough space? How can we bring in natural elements? What is the impact of animals on a new track?”
“Students have to think about how to use recycled, reusable items in the track design,” Ridge notes. “One award the judges present [when judging track designs] is for the greenest track.”
“When students go to the track, they see the impacts of weather [on it, such as] erosion,” says Duvarney. “So much maintenance is needed to keep these tracks in tip-top condition. Students learn it’s all about safety and maintenance to preserve what you have built.”
Students were assessed, says Scranton, “with the use of science journals. The kids kept record of all the stages of the project using the 5E lesson plan. The final track build was also used to assess overall understanding.”
Learn more about USA BMX Foundation’s youth education programs at http://bit.ly/31zTsgH.
USA BMX Foundation’s STEM Program
The USA BMX Foundation also offers a STEM Program in which students in grades 3–5 (and in grades 6–8 in an expanded version) “assemble bikes and do [STEM-related] experiments with them, such as calculating speed and trying out different tires,” Duvarney explains. “Teachers get an instructor’s manual, and no prior knowledge is needed. Our STEM Program is unique because it can fit with physical education, summer camps, and out-of-school time.”
The program supports NGSS, and the instructor manual includes “pre- and post-tests that help teachers see what students learned,” he adds.
Landrith brought the STEM Program to fifth graders at a Tucson middle school. “Students are on bikes every day, and work in groups; they do experiments with bikes, gathering data on [things like] the effects of tire pressure on bicycle efficiency; seat position and its effects on the force on the pedal; how tire tread affects a bike on different terrains; how speed affects balance; and how much stopping distance is needed on sloped versus flat terrain,” she relates. “Back in the classroom, they analyze the data and reach a conclusion…[The program] matches many standards beautifully.”
For veteran science educators Laura Tucker and Lois Sherwood there is no debate about climate science. But Tucker and Sherwood realized that few books provide the much-needed assistance that teachers need to cover the scope of climate science with special attention to humanity’s role.
Tucker and Sherwood’s NSTA book, Understanding Climate Change, fills that gap and does so with “conscious attention” to three-dimensional teaching and learning called for in the Framework (for K-12 Science Education), writes NSTA Executive Director Dr. David L. Evans in the book’s forward. “The authors have made a real contribution … by providing structured suggestions that encourage students to use they science they have learned in considering the effects of human activity,” Evans said. “By making this connections, students have the best chance to use science to positively ‘affect the lives of future generations.’”
Not every secondary teacher will have received specialized climate science training, so the authors provide the much-needed text summarizing the underlying science.
The book takes students from awareness of climate change to comprehension over nine sessions, which the authors recommend being taught as a unit once between grades 7 and 12. The authors encourage science educators to decide where this units “fits best in your school or district’s scope and sequence to maximize the learning opportunities while building solid comprehension,” but urge teachers to follow their suggested time frame so that “complex topics are not shortchanged and students are allowed ample time to engage, process, and reflect.
“It is critical that the entire unit be taught with fidelity. It takes time to cover a topic as complex as climate change,” Tucker and Sherwood write.
The unit was strategically structured to engage student interest and to build a conceptual foundation without overloading learners. Scaffolding is then provided for students to conduct their own research, draw their own conclusions. The linkage and sequencing of the nine sessions allows students to build on concepts in order to better understand what comes next, thus providing a constructivist model of learning.
Each session incorporates most if not all of the following components:
A brief overview of the session
Clear measures to define the skills and knowledge acquired by students
Detailed material lists (for the class, student groups, and each individual student)
Instructions for how to prepare prior to and on the day of instruction
Continual student reflection and re-evaluation of their learning
Opportunities to delve deeper into session topics
Online access to all materials used by students (data sets, rubrics, worksheets, etc.)
Access to interviews with people working to address climate change
Science and pedagogy to support deeper understanding of the content and process of each session
Assessment opportunities
Additional resources
The book’s first edition was field tested across Sherwood’s four, 10th-grade classes, and after completing this unit, a number of them formed their own group—Students for Sustainability—and affected positive changes within their school and out in their community. They even made a 6,000-mile round-trip journey, traveling from Washington state to Washington, D.C. and back, using only public transportation, to advocate for climate action. Their work is featured in Session 8.
If you’re trying to answer the question, “What’s the best way to approach the potentially controversial subject of climate change in my classroom?” the comprehensive curriculum provided in this book is an excellent resource for doing so.
Order a copy of Understanding Climate Change, here.