The Science Teacher—October 2019 (Volume 87, Issue 3)
By John Almarode, Douglas Fischer, and Nancy Frey
Through teaching science, we have the pleasure of developing and implementing learning experiences that allow students to discover how the world works (Schwarz, Passmore, and Reiser 2016). Interweaving the laws, principles, and theories of the universe with scientific practices that have allowed scientists to discover these ideas is the focus of teaching and learning in the science classroom. The overall intention is that learners will walk away with the ability to engage with science-related issues, and with ideas and processes or practices of science beyond the walls of the classroom—the definition of scientific literacy (OECD 2016). We want our learners to take ownership of their learning in pursuit of knowing and understanding things in the world.
Thinking about your own classroom, do any of these scenarios sound familiar?
There is a common thread running through each of these situations: The learners are not clear about what they are learning, why they are learning it, and how they will know when they are successful. Instead of scaffolding learners as they construct scientific explanations of phenomena, these classrooms have placed discrete tasks and isolated experiences in front of students in the hope that they learn about science.
The learners in these classrooms are just waiting to be entertained by the demonstration, checking off the steps in a laboratory investigation, memorizing discrete facts, doing science only when they are in the science classroom, and learning textbook definitions of words. These situations do not provide an authentic context that is relevant to these adolescent learners. What results is that students are no closer to three-dimensional learning (science and engineering practices, disciplinary core ideas, and crosscutting concepts) as envisioned by the National Research Council and articulated in the Next Generation Science Standards, much less scientific literacy (NGSS Lead States 2013).
You may relate to one, some, or all of these scenarios. In fact, you may be thinking that each of these situations was written based on your classroom and students. The point of this article is not to simply acknowledge this problem; instead, we want to close the gap between what we intend for our students to know, understand, and be able to do, and what they actually walk away with from our science classrooms. How do we support learners so that they move beyond the idea that science is a discrete collection of facts toward science as a body of knowledge, driven by a set of practices, that progresses through the reliance on science practices? The answer: clarity about learning.
Planning and implementing cohesive science learning experiences that build and utilize science knowledge to explain phenomena, while at the same time drawing on problem-solving within that context is more than just clarity. However, without clarity about learning, students are less likely to make meaning of these experiences, and thus not engage in working toward the learning intentions or goals in the science classroom (Schwarz, Passmore, and Reiser 2016). We will look at the foundation for effective science teaching and learning, the one thing we have complete control over every day (whether it is in biology, chemistry, Earth science, or physics): clarity about learning.
Clarity refers to the overall awareness of the teacher and the learners regarding what the science learning is for that day or class period, why we are learning this science content or engaging in these practices of science, and what successful learning looks like. Put differently, for learners to have clarity in the science classroom simply means they must know the what, why, and how of the day’s learning.
For adolescents, the why is our opportunity to provide authentic content and science practices. The why should provide clarity about the relevance of learning. For example, learning about the structures and functions of a cell is not as authentic as learning through the phenomenon of diseases caused by problems at the cellular level (e.g., malaria, meningitis, types of cancers, or cystic fibrosis).
The clarity for learning concept was initially introduced by Rosenshine and Furst (1971) and accompanied by a growing body of evidence that shows clarity for learning has a significant influence on teaching and learning (Cruikshank 1985; Hines 1981; Saphier, Haley-Speca, and Gower 2008; Simonds 1997). Using meta-analyses, John Hattie (2009) reported that clarity for learning has an effect size of 0.75. As mentioned previously, this is the foundation of effective science teaching, learning, and initial investment from the teacher in planning for clarity about learning. What does this look like in our science classrooms?
Fendick (1990) defines clarity as the compilation of organizing instruction, explaining content, providing examples, using guided practice, and assessing learning. These specific components of clarity are rooted in the planning process, and make the content and practices accessible to learners. As teachers engage in their limited but highly coveted planning time, ensuring students have clarity in their science learning requires that they be intentional, deliberate, and purposeful in the planning of each experience in the science classroom.
From demonstrations to discovery tasks, note-taking to interactive notebooks, lectures to laboratories, we have to be clear about what we want our students to learn, why they are learning it, and what success will look like at the end of the experience. For example, is a cooperative learning task or the use of guided inquiry more appropriate today? What about a laboratory investigation versus direct instruction? What types of questions should I propose to my students and what questions should I guide them into proposing? When should I incorporate vocabulary instruction instead of a concept attainment approach?
This, of course, includes the selection of the best phenomenon by which we will contextualize the content and practices. Only after we have clarity can we align that learning with a learning environment that maximizes the acquisition and consolidation of the core ideas through the use of science practices and the relationships between crosscutting concepts (NGSS Lead States 2013). So how do teachers leverage their planning time to establish clarity in learning?
Planning for teaching and learning is a series of intentional, deliberate, and purposeful decisions based on what students are learning, where they are in their learning journey, and the skills and expertise of the teacher to move their learning forward. For expert teachers, these decisions happen as naturally as breathing. For other teachers, these decisions require lesson planning templates, programmatic instruction, and scripted instruction.
We can think of planning for clarity in the science classroom as a series of questions about the upcoming learning experience. As each teacher or collaborative planning team prepares for tomorrow, next week, or the next unit, the responses to each question facilitate the development of teacher clarity, paving the way for student clarity in the science classroom. Table 1 contains the series of questions that represent the planning decisions highlighted by Fendick’s (1990) definition of teacher clarity.
Planning for clarity guiding questions. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
|
Each question moves us from the intention of the day’s learning to the implementation and facilitation of that learning, so that our learners have clarity about the what, why, and how of today’s science learning. Investing time in this process clarifies the pathway to successful learning, allowing each teacher to plan with clarity in learning. If we take the time to make sure we know the what, why, and how, there is a greater likelihood that students will have clarity about the learning and see beyond the demonstration, laboratory investigation, and discrete facts and terminology.
Returning to the five scenarios at the beginning of this article, clarity narrows our science teaching and learning focus so that our students see that:
Clarity ensures that the focus is on the learning within the context of scientific phenomena and practices; the specific demonstration, laboratory, approach, or strategy is the vehicle by which we arrive at that learning. Student clarity comes from teacher clarity and from implementing learning experiences that promote figuring out and not just learning about.
Clarity in learning is one thing that we can do tomorrow to have a significant impact on science teaching and learning. If we are to effectively engage our learners in core ideas, support their development of science practices, and facilitate their understanding of crosscutting concepts, we have to be intentional, deliberate, and purposeful in how we design their science learning experiences. This allows us to select the right approach, at the right time, for the right science learning. Clarity speaks more to how teachers and students approach the learning rather than focusing on a specific demonstration, laboratory, approach, or strategy.
Without clarity in learning, we are more likely to have fragmented lessons, instruction based on “cool science activities,” the use of instructional strategies that do not match learning outcomes, a lack of checks for understanding, and unhelpful assessment data. Each of these reduces our return on investment, painting science as a collection of discrete facts or the stinks and bangs from jaw-dropping demonstrations—learning about and not figuring out.
We will know we have clarity about learning when our students can answer three very important questions about the day’s learning in the science classroom (Figure 1).
Without clarity from both students and teachers, all other decisions in our science classroom rely on hope and luck, neither of which are evidence-based tasks or strategies (Saphier, Haley-Speca, and Gower 2008). Clarity about learning really narrows our science teaching and learning focus so that we are both efficient and effective in having an impact on student achievement and growth. After all, a demo, a lab, and the practices of science should offer more than just entertainment value.
Literacy Teaching Strategies High School