Skip to main content

 

The Science Teacher March 2020

Volume 87, Number 7

Making science come alive and having students address critical social issues creates a more socially just environment, where all students truly are created equal.

 

The Science Teacher March 2020

Volume 87, Number 7

Making science come alive and having students address critical social issues creates a more socially just environment, where all students truly are created equal.

 

The Science Teacher March 2020

Volume 87, Number 7

Making science come alive and having students address critical social issues creates a more socially just environment, where all students truly are created equal.

 

Safety Blog

Being Shielded to Avoid A Safety Pickle!

By Kenneth Roy

Posted on 2020-03-01

I. Demonstration Hazards

A common demonstration that science teachers have used over the years is titled “The Electric Pickle.” It illustrates the fact that when an electric current passes through a salt solution, the sodium ions will emit a signature yellow light; AKA – a yellow lighted pickle. As interesting and motivating as it can be for students, there is the potential of this being a very hazardous demo. For starters, a live 110-volt current is being used.  Given the risk of electric shock, make sure any power receptacle being used is ground-fault circuit interrupter or GFCI protected! There is also the risk of explosion.  Like many other science laboratory demonstrations, there can be a high element of safety hazards and resulting serious risks for both the teacher demonstrator and the student observers. Before considering such demos, teachers must do a hazard analysis, risk assessment and determine the resulting safety actions to be taken for a safer outcome.

II. Hierarchy of Controls for Hazards!

The resulting safety action results from the Hierarchy of Controls (https://www.cdc.gov/niosh/topics/hierarchy/default.html). The first and highest level of controls involves “elimination (including substitution)” or removing the hazard from the lab, or substitute (replace) hazardous materials with less hazardous ones.

Secondly, “engineering controls” include equipment and processes that reduce the source of exposure.

Thirdly is the use of “administrative controls” which alter the way the work is done, like work practices such as standards and operating procedures (including training, housekeeping, and equipment maintenance, and personal hygiene practices).

Lastly is “Personal Protective Equipment or PPE.” This is equipment worn by individuals to reduce exposure such as contact with biological, chemical or physical hazards.

III. Focus on Safety Shields

A number of lab accidents that take place during demonstrations result from lack of a safety shield being used between the demonstration and the student observers. One engineering control which is often ignored but could potentially reduce or eliminate accidents and serious injuries is the use of a safety shield. This is clearly stated in the NYC Safety Manual (Grades K-12) on page 10: “Place a safety shield between the students, yourself, and the demonstration.” (https://www.uft.org/files/attachments/doe-science-safety-manual.pdf).

For example, in the electric pickle demo, a Plexiglas panel or shield should be used between the electrified pickle and the student observers for added protection. Also know that if laboratory procedures call for a safety shield, then safety glasses or goggles (as appropriate) must also be worn. Finally, if appropriate, use a face shield. Portable safety shields can provide limited group protection against hazards such as chemical and/or biological splashes, explosions, impact and fires.

Use of a fume hood may be the safer alternative. Laboratory equipment/chemical apparatus need to be shielded on all sides. In this way, no line-of-sight exposure to laboratory occupants can take place. Both the vertical and horizontal fume hood sashes are designed for use as a safety shield to protect against spills and splashes. Keep the hood sash closed as much as possible. However, be aware that fume hood sashes may not provide protection against explosions, implosions, and flying objects. Sashes constructed of safety glass can minimize injuries from embedded glass. Always wear splash goggles, and use a full face shield in using a fume hood if there is possibility of an explosion or eruption.

III. Final Note

Bottomline is – Before doing a demonstration or experiment, also do a hazard analysis, risk assessment and adopt the appropriate safety actions. This includes the Hierarchy of Controls. Remember to especially use appropriate engineering controls as needed like a portable safety shield or fume hood with an operational sash whenever there is potential danger that an explosion or implosion of an apparatus might occur.

Submit questions regarding safety to Ken Roy at safersci@gmail.com or leave him a comment below. Follow Ken Roy on Twitter: @drroysafersci.

I. Demonstration Hazards

cover

Volume 57, Number 7

Mindful Modeling

 

cover

Volume 57, Number 7

Mindful Modeling

 

cover

Volume 57, Number 7

Mindful Modeling

 

Integrating STEM Teaching and Learning Into the K–2 Classroom

New in 2020!
“Integrating STEM Teaching and Learning Into the K–2 Classroom is a critically important contribution toward advancing STEM teaching and learning. It blazes a trail for early elementary classroom practitioners to reflect the latest thinking in STEM education, and it provides a means by which early elementary educators can meaningfully contribute to America’s STEM education movement.”
—Jeff Weld, former senior policy advisor on STEM education, White House Office of Science and Technology Policy
New in 2020!
“Integrating STEM Teaching and Learning Into the K–2 Classroom is a critically important contribution toward advancing STEM teaching and learning. It blazes a trail for early elementary classroom practitioners to reflect the latest thinking in STEM education, and it provides a means by which early elementary educators can meaningfully contribute to America’s STEM education movement.”
—Jeff Weld, former senior policy advisor on STEM education, White House Office of Science and Technology Policy
 

Research and Teaching

Building First-Year Science Writing Skills With an Embedded Writing Instruction Program

Journal of College Science Teaching—January/February 2020 (Volume 49, Issue 3)

By David Dansereau, L. E. Carmichael, and Brian Hotson


An important foundational skill developed in an undergraduate science program is the ability to find, critically evaluate, and communicate scientific information. Effective science communication depends on good writing; therefore, we leveraged student support services offered by the Writing Centre and Academic Communications, in conjunction with the Office of the Dean of Science and the departmental chair of Biology at Saint Mary’s University (Halifax) to help meet science-writing outcomes in the Biology program. Our initiative began with writing-instruction workshops, embedded into firstyear labs, which supported student writing of formal lab reports. The program also featured instructor feedback on drafts and final resubmissions, and mandatory consultations with disciplinespecific writing tutors during the revision phase. We used surveys, attendance records, and grades to evaluate the program’s success. Writing tutoring was incentivized and well attended, and we measured a significant improvement on final lab reports grades for students who made use of the program. Over 80% of participants, both science majors and nonmajors, reported that the program had prepared them for future courses.

 


An important foundational skill developed in an undergraduate science program is the ability to find, critically evaluate, and communicate scientific information. Effective science communication depends on good writing; therefore, we leveraged student support services offered by the Writing Centre and Academic Communications, in conjunction with the Office of the Dean of Science and the departmental chair of Biology at Saint Mary’s University (Halifax) to help meet science-writing outcomes in the Biology program.

An important foundational skill developed in an undergraduate science program is the ability to find, critically evaluate, and communicate scientific information. Effective science communication depends on good writing; therefore, we leveraged student support services offered by the Writing Centre and Academic Communications, in conjunction with the Office of the Dean of Science and the departmental chair of Biology at Saint Mary’s University (Halifax) to help meet science-writing outcomes in the Biology program.
 

Research and Teaching

An Introvert’s Perspective: Analyzing the Impact of Active Learning on Multiple Levels of Class Social Personalities in an Upper Level Biology Course

Journal of College Science Teaching—January/February 2020 (Volume 49, Issue 3)

By William C. Beckerson, Jennifer O. Anderson, John D. Perpich , and Debbie Yoder-Himes


With calls to reassess higher education teaching methods, active learning practices have quickly become a popular alternative to traditional lectures, especially in STEM courses that traditionally rely heavily on large-lecture formats. In this regard, active learning environments stand to better prepare students for life after college; however, student personality may play a major role in how students perform in these settings. Our research examines the effect that active learning environments have on the performance of individuals by a variety of personality types, determined by the IPIP Big Five Measures of Personality. Although our research found a trend toward improved tests scores overall for those who attended group-based learning sessions in an active learning environment, we found statistically significant differences between how introverts and extroverts perform on exam questions pertaining specifically to material covered in the groupbased active learning sessions. This research highlights that class composition of personality plays an important role in how active learning should be implemented and provides evidence that active learning is not a one-size-fits-all practice.

 


With calls to reassess higher education teaching methods, active learning practices have quickly become a popular alternative to traditional lectures, especially in STEM courses that traditionally rely heavily on large-lecture formats. In this regard, active learning environments stand to better prepare students for life after college; however, student personality may play a major role in how students perform in these settings.

With calls to reassess higher education teaching methods, active learning practices have quickly become a popular alternative to traditional lectures, especially in STEM courses that traditionally rely heavily on large-lecture formats. In this regard, active learning environments stand to better prepare students for life after college; however, student personality may play a major role in how students perform in these settings.
 

Research and Teaching

Clickers Are Not Enough: Results of a Decade-Long Study Investigating Instructional Strategies in Chemistry

Journal of College Science Teaching—January/February 2020 (Volume 49, Issue 3)

By David J. Weiss, Patrick McGuire, Wendi Clouse, and Raphael Sandoval


Studies on the effectiveness of clickers in undergraduate chemistry courses are mixed, and there is disagreement on how to effectively leverage clickers to improve student learning performance. To fill a gap in the research, we analyzed three different teaching strategies (two involving clickers) in a General Chemistry I course over a 13-year time period. Student performance outcomes (e.g., midterm exam scores, final exam grades, final course grades, and course drop rates) were analyzed from 1,551 undergraduate chemistry students from three groups: (a) students who learned through traditional lecture without clickers; (b) students who used clickers in unstructured learning environments (unassigned groups) within a traditional lecture; and (c) students who used clickers in a structured, collaborative, smallgroup format (assigned groups) to solve problems during lecture. ANOVA indicated a statistically significant difference between Group 1 (lecture without clickers) and Group 3 (clickers in conjunction with collaborative, small, assigned groups) on all student performance outcomes studied. We also observed a reduction in the percentage of students withdrawing from the course when comparing the traditional lecture group to the groups exposed to clickers.

 


Studies on the effectiveness of clickers in undergraduate chemistry courses are mixed, and there is disagreement on how to effectively leverage clickers to improve student learning performance. To fill a gap in the research, we analyzed three different teaching strategies (two involving clickers) in a General Chemistry I course over a 13-year time period.

Studies on the effectiveness of clickers in undergraduate chemistry courses are mixed, and there is disagreement on how to effectively leverage clickers to improve student learning performance. To fill a gap in the research, we analyzed three different teaching strategies (two involving clickers) in a General Chemistry I course over a 13-year time period.
 

Research and Teaching

Teamwork Makes the Dream Work: Using Team-Based Learning in the Science Classroom

Journal of College Science Teaching—January/February 2020 (Volume 49, Issue 3)

By Virginia J. Moore, Elizabeth Mitchell Prewitt, Amber Jean Carpenter-McCullough, and Brooke A. Whitworth


With an overwhelming amount of research and a demand for collaborative learning in the classroom, teachers are tackling challenges at all educational levels that often accompany the social aspects of group work. Team-Based Learning (TBL) is an instructional sequence that shifts instruction from teacher lecture to small-group learning. Through the use of teams and social learning, students are actively engaged and learning through critical-thinking tasks. College students can take responsibility both for their own learning and for each other as learners and fellow human beings. TBL allows the instructors to design opportunities for students to demonstrate what they know and can do in the classroom with the content. This study qualitatively examines students’ perceptions of the pedagogical strategy TBL in an undergraduate science course. TBL practices enabled instructors to prepare students for classes in advance and assist students in deeply learning the material through application of course concepts, allowing them to solve interesting, complex, and real-world problems that are relevant to the teaching profession.

 


With an overwhelming amount of research and a demand for collaborative learning in the classroom, teachers are tackling challenges at all educational levels that often accompany the social aspects of group work. Team-Based Learning (TBL) is an instructional sequence that shifts instruction from teacher lecture to small-group learning. Through the use of teams and social learning, students are actively engaged and learning through critical-thinking tasks. College students can take responsibility both for their own learning and for each other as learners and fellow human beings.

With an overwhelming amount of research and a demand for collaborative learning in the classroom, teachers are tackling challenges at all educational levels that often accompany the social aspects of group work. Team-Based Learning (TBL) is an instructional sequence that shifts instruction from teacher lecture to small-group learning. Through the use of teams and social learning, students are actively engaged and learning through critical-thinking tasks. College students can take responsibility both for their own learning and for each other as learners and fellow human beings.
 

A Learning Tool for Chemistry and Health Professions Students: Mnemonics for Writing Net Ionic Equations

Journal of College Science Teaching—January/February 2020 (Volume 49, Issue 3)

By Angela L. Mahaffey

Chemical mnemonic devices have been designed to aid students in understanding chemical concepts in previous years. This has been done for concepts such as oxyanions, ozonolysis, tautomerization mechanisms in organic chemistry, and writing reactions of metals with nitric acid. One chemical concept introduced to students in the chemistry and nonchemistry degree programs is solubility and chemical element group chemistry reactions. A main component of group chemistry is precipitation reactions and net ionic equations. Three separate groups of health professions students, totaling 136 students, were surveyed using Sakai (an open-source CLE software) on the difficulty of concepts within physical science courses taken in accordance with their program’s core curriculum. The results of this student poll illustrate that undergraduate health professions students (nursing, medical sciences, exercise sciences, etc.) perceive chemistry courses as presenting the most difficult concepts, for all three groups. A separate survey was also performed, asking students the year of their last high school chemistry course. The majority of health profession students polled that their second year of high school was their last year of high school chemistry. This highlighted a need for learning aides: two useful chemical mnemonic devices have been designed to aid students in writing net ionic equations.
Chemical mnemonic devices have been designed to aid students in understanding chemical concepts in previous years. This has been done for concepts such as oxyanions, ozonolysis, tautomerization mechanisms in organic chemistry, and writing reactions of metals with nitric acid. One chemical concept introduced to students in the chemistry and nonchemistry degree programs is solubility and chemical element group chemistry reactions. A main component of group chemistry is precipitation reactions and net ionic equations.
Chemical mnemonic devices have been designed to aid students in understanding chemical concepts in previous years. This has been done for concepts such as oxyanions, ozonolysis, tautomerization mechanisms in organic chemistry, and writing reactions of metals with nitric acid. One chemical concept introduced to students in the chemistry and nonchemistry degree programs is solubility and chemical element group chemistry reactions. A main component of group chemistry is precipitation reactions and net ionic equations.
Subscribe to
Asset 2