By Lauren Jonas, NSTA Assistant Executive Director
Posted on 2014-09-29
Having worked at the National Science Teachers Association (NSTA) for many years, I get to talk to a lot of science teachers. One of my favorite things about them is how much they share with each other. In fact, I joked at our recent national conference that all the selfies were really “groupies”! So, inspired by this sharing, I wanted to pass along some of NSTA’s best time- and money-saving resources, written by (you guessed it) science teachers. The books below all contain tried-and-true ideas, and in the spirit of sharing, I made sure to list a free chapter from each. You won’t have to pull out your wallet for this one—each freebie delivers actionable advice you can use in the classroom tomorrow.
The Frugal Science Teacher, PreK–5: Strategies and Activities
This collection of essays, carefully selected by former NSTA President and current Science and Children editor Linda Froschauer, outlines creative and inexpensive ways for preK through fifth-grade science teachers to keep their expenses to a minimum in five categories:
Chapters provide inexpensive alternatives to costly classroom projects, offer re-imagined uses for items teachers already have at home or school, and suggest new and untapped resources for materials. Even more important than offering ideas for frugality, the activities and strategies—such as “String Racers,” “Discovery Bottles,” “Ecosystem Jenga,” and “An Outdoor Learning Center”—enhance teachers’ abilities to develop their students’ conceptual understanding. (Read a sample chapter: Materials Repurposed: Find a Wealth of Free Resources at Your Local Recycling Center)
Even More Picture-Perfect Science Lessons: Using Children’s Books to Guide Inquiry, K–5
Since the debut of the Picture-Perfect Science books and workshops more than 10 years ago, authors Emily Morgan and Karen Ansberry have learned one thing for certain: Elementary school teachers are constantly clamoring for even more ways to engage children in reading and science through picture books. To meet that demand, the 15 all-new lessons in Even More Picture-Perfect Science Lessons bring you:
Plus: This latest volume even connects the lessons to A Framework for K–12 Science Education and the English Language Arts and Literacy Common Core State Standards.
Just as teachers like you have been hoping, Even More Picture-Perfect Science Lessons delivers the whole package: teacher-friendly lessons, strong standards-based science content, and a kid-magnet formula that will get your students engrossed in science while they improve their reading skills. (Read a sample chapter: The Wind Blew)
The Everyday Science Sourcebook, Revised 2nd Edition: Ideas for Teaching in Elementary and Middle School
Think of this unique reference book as Inspiration Central for elementary and middle school science teachers. The Everyday Science Sourcebook is structured like an easy-to-use thesaurus. Just look up a topic in the Index, note the reference number, and then use that number to find a wealth of related activities in the Entry section. For example, looking up meteorology can lead you to notes on the Earth’s temperature. From there, you’ll see entries on how students can make a liquid thermometer, graph air temperatures, and measure the conversion of solar energy to heat energy. The Everyday Science Sourcebook deserves a prominent spot on your bookshelf. Refer to it daily as a springboard for ideas that make science memorable. (Read a sample chapter: Weather)
Tried and True: Time-Tested Activities for Middle School
A compilation of popular “Tried and True” columns originally published in the award-winning journal Science Scope, this book is filled with teachers’ best classroom activities—time-tested, tweaked, and engaging. These favorites are organized by topic, including physical science, life science, Earth and space science, and instructional strategies. Teachers will appreciate the accompanying activity worksheets and visual aids. These ageless activities will fit easily into your middle school curriculum and serve as permanent go-to resources when you need a tried-and-true lesson for tomorrow. (Read a sample chapter: How the Brain Visually Perceives the World)
The Frugal Science Teacher, 6–9: Strategies and Activities
Teachers of all grades and disciplines often dip into their own wallets to outfit their classrooms with materials and supplies that school and district budgets can’t—or won’t—cover. Science teachers tend to find themselves supplementing their shrinking funds with even greater frequency. Chapters in this book provide inexpensive alternatives to costly classroom projects, offer re-imagined uses for items teachers already have at home or school, and suggest new and untapped resources for materials. Even more important than offering ideas for frugality, the activities and strategies—such as “Wiffle Ball Physics,” “Geology on a Sand Budget,” “Forensics on a Shoestring Budget,” and “Ever Fly a Tetrahedron?”—enhance teachers’ abilities to develop their students’ conceptual understanding. (Read a sample chapter: Making Mendel’s Model Manageable)
Take-Home Physics: 65 High-Impact, Low-Cost Labs
Take-Home Physics is an excellent resource for high school physics teachers who want to devote more classroom time to complex concepts while challenging their students with hands-on homework assignments. This volume presents 65 take-home physics labs that use ordinary household items or other inexpensive materials to tackle motion and kinematics; forces and energy; waves, sound, and light; and electricity and magnetism. The result: Students learn background knowledge, reinforce basic process skills, practice discovery, and bridge classroom learning with real-world application—all while getting excited about homework. Teachers can also integrate science and literacy by requiring the use of lab notebooks with formal write-ups. Materials lists and safety notes, as well as both student activity pages and teacher notes are included. (Read a sample chapter: Bernoulli’s Principle)
The New Science Teacher’s Handbook: What You Didn’t Learn From Student Teaching
By reading The New Science Teacher’s Handbook, you will learn 12 specific steps that will help you on your way to becoming a skilled classroom teacher. The authors make each chapter both helpful and fun to read by including:
The book addresses areas that are often underrepresented, if not completely ignored, by prevalent science methods pedagogy textbooks. “Whether you are on your way to becoming a science teacher or a teacher in your early years,” the authors write, “we feel confident the ideas presented here will help you become the teacher you’ve always wanted to be.” (Read a sample chapter: Starting Class the Right Way: Starter Activities)
Inspired by these books? We have one last money-saving idea for you. Take advantage of our FALL14 promo code at the NSTA Science Store, which will get you $15 off purchases of $75 or more of NSTA Press titles.
Follow NSTA
![]() |
![]() |
![]() |
![]() |
Having worked at the National Science Teachers Association (NSTA) for many years, I get to talk to a lot of science teachers. One of my favorite things about them is how much they share with each other. In fact, I joked at our recent national conference that all the selfies were really “groupies”! So, inspired by this sharing, I wanted to pass along some of NSTA’s best time- and money-saving resources, written by (you guessed it) science teachers.
By Mary Bigelow
Posted on 2014-09-29
I’m a new high school teacher looking for suggestions on how to estimate the amount of time a lesson will take. My lessons look good when I plan them, but I find that often a lesson is either too short and we have extra time at the end of the class or I run out of time to complete the activity or get to everything I wanted to do. I’m a beginning high school teacher looking for suggestions on how to estimate the amount of time a lesson will take.
—H. from Minnesota
I wish I had an algorithm to share for estimating time for class activities, but there are many variables involved: the number of questions students have, the amount and depth of discussion, interruptions and distractions, equipment or technology issues, time spent on classroom management, and digressions for “teachable moments.”
For teaching several sections of the same class, I found it helpful to keep them near the same pace, within reason, for planning lab investigations or assignment due dates. It didn’t help that some of the class periods in my school were 40 minutes and others were 45! Due to school events, there were days when I did not meet with all of my classes. There also were days when activities were completed quickly in some classes and dragged on in others.
At the end of each class, annotate your plans with what students were able to accomplish and any issues that arose. The next time you plan this lesson, you’ll be better able to determine how much time to allow. You’ll see that many lessons will take more than one class period.
You may find it necessary to spend time on extra discussion or to slow the pace if students are struggling or need assistance. But you can maximize productive class time by establishing and using routines. When students come into the classroom, they could follow a bell-ringer activity to get them ready and focused for class. With routines in place, students should know how to transition between activities, how and where to get materials, and what to do when disruptions happen.
If the students complete activities ahead of time, it’s not good to give them “free” time for socializing. This could reinforce the idea of rushing through an activity just to get finished. Use extra time to continue student learning with additional discussion, review, readings, journaling, or moving ahead to the next topic or task.
Here are some suggestions from an NSTA forum on the topic:
Trying to stay on a rigid timetable, especially if you teach more than one section of a course, is futile! You’ll find that with more experience, you’ll be better able to determine an appropriate time range.
Photo: https://www.flickr.com/photos/cgc/7080721/sizes/q/
I’m a new high school teacher looking for suggestions on how to estimate the amount of time a lesson will take. My lessons look good when I plan them, but I find that often a lesson is either too short and we have extra time at the end of the class or I run out of time to complete the activity or get to everything I wanted to do.
By Martin Horejsi
Posted on 2014-09-28
The Vernier Motion Encoder System marks a significant shift in the science teacher’s ability to transition between the conceptual, formula-based physics of motion to the “real world” application of those concepts and formulas—and here’s the big news—without the need for disclaimers explaining away anomalous data, inconsistent graphs, and the general background noise of low resolution measurements. While it is possible to argue that the essence of a motion activity transitions from concept to concrete without using meaningful data since the students at this level are able to imagine what was supposed to happen, by actually capturing accurate and precise motion data, the traditional conclusion of the motion lesson is actually just the beginning of what is now possible to experiment with and visualize.
[youtube]http://youtu.be/XhpRsUAG36Q[/youtube]
While it would be easy to dismiss all the good science taught with primitive methods, instead the simplicity, accuracy and operational speed of Vernier’s Motion Encoder System provides students not only a crystal clear insight into the nuts and bolts of motion, but also raises the bar on the subtitles and nuances of motion through actual hands-on experimentation and, if you will, science play.
Vernier describes their paradigm shift somewhat dryly as, “The encoder strip consists of alternating black and white bars with a 4 mm period, allowing the optical sensor to detect the passage of the bars as the cart moves. With two sensors appropriately placed, a change in position with 1 mm resolution can be determined, as well as the direction of travel. A narrow infrared beam transmits motion data to a receiver.”
This descriptive paragraph reminded me of a NASA STARDUST announcement where a sample return mission brought back some comet material that contained features known as CAIs or calcium aluminum inclusions. The excitement of CAIs is in their status as one of the first solids to condense out of the solar nebula after the birth of our solar system. What NASA should have announced is that comets contain material older than the earth! And let the details shake out once the reader’s attention was secured. Check out this link to a NASA/JPL instructional product that adds more humor and exclamation points to comet science.
Vernier, in their humble pursuit of elegant science teaching solutions, has produced a motion track the length of a tall student’s arm with carts the size of human hands and a motion resolution at the limit of our finger fine motor skill!
Well, OK, maybe it’s not quite as exciting as being truly older than dirt, but given the overwhelming quantity of our brain that is devoted to exploring the world with our hands, the Motion Encoder System has just brought the fundamental principles of motion into a bio-conceptual arena that we humans are uniquely prepared to explore.
Continuing the theme of the old ceiling becoming the new floor, the Motion Encoder System can first make the abstract concrete, and then provide a safe and power playground to visualize motion data as the actual motion is happening, but then become a testing instrument itself as students mentally explore motion beyond the fabricated universe of a metal track, low friction vehicles, and infrared sensors. In other words, once the foundations of motion are understood, the Motion Encoder System itself becomes a tool in a larger exploration toolbox.
For example, imagine what the motion vs. time graph looks like if you centered a car on the level track with the entire track able to roll back and forth on “bearings” of smooth round pencils. Consider sliding the track to the right while the sensor is on the left side of the track. Did the car move? Or is it relative? Was the motion uniform? Did the car continue to move when the track stopped? You might be asking, “What a practical application of this tangent of questioning?” How about the crash landing of the Genesis spacecraft?
[youtube]http://youtu.be/WFLGyCFeP_Q[/youtube]
Genesis was a NASA mission that collected solar wind particles on special tiles of various elements. The collection of impregnated hexagons were sealed in their sample return capsule and flown back to earth where upon reentering the atmosphere, the parafoil failed to deploy. Due to the extreme fragility of the pure elemental wafers, landing on the ground was ruled out and the plan was to pluck the floating spacecraft out of the air by a highly trained helicopter pilot using a giant hook suspended from his craft. Unfortunately, as often happens, Murphy’s Law came home from vacation early and at just the wrong moment. And this particular instance is not just a loose reference to Murphy’s Law, but in fact a historical repeat of the foundational mistake that potentially created the so-called Law in the first place.
You see Murphy was a real engineer named Edward Murphy Jr. who did real science with real people and used real data collection sensors. During the rocket sled g-force deceleration testing in the late 1940s. Murphy thought it would be a good idea to insert strain gauges into the harness of the rocket sled in order to measure the actual g-forces experienced by the test subject. After the initial run using a chimpanzee, the sensors read zero. Upon further inspection, it was discovered that every sensor was wired backwards thus unable to record the deceleration. In the case of the Genesis Sample Return Capsule, an onboard accelerometer was included to detect atmospheric resistance on the capsule through deceleration which would then signal the deployment of the drogue parachute further slowing the capsule velocity down to a safe parafoil release speed. Except the accelerometer was installed upside-down. The sensor never detected the slowdown. The drogue chute never deployed. The parafoil never unfolded. And the entire 450-pound sample return capsule never hesitated when it slammed into the Utah desert at 193 miles an hour. (From a purely scientific viewpoint, however, the impact did provide an excellent example of meteoritic cratering complete with crater rim, rays, and reverse stratigraphy.) http://www.jpl.nasa.gov/news/press_kits/genesisreturn.pdf
So back to the main question…what will the graph look like if the track moves instead of the car? And now try to visualize which direction an accelerometer should be pointed (up or down) in order to detect a spacecraft slowing due to the atmosphere. Should it point in the direction of travel or the opposite? Are you sure? Are you willing to bet $264 Million on it?
Or perhaps collisions are of interest. The Vernier Motion Encoder System includes two carts, one with a sensor, and one with a retractable spring plunger, and both carts with magnetic and hook-and-pile endcaps.
Inertia is another aspect that plays very well with real-time motion data collection. But first a minor digression. A funny thing happened on the way to the Newton’s Cradle demonstration. The teacher was prepared to share the magic of conservation of momentum when it occurred to her that the usual explanation of the balls motion is actually a violation of the very law she was excited to demonstrate. If momentum truly is conserved, then the dropping of two balls on one side would not produce two balls on the rising other side, but rather one ball rising with the conserved momentum of two balls. Physics is not a democracy. There is nothing that would divide up the momentum fairly between the two receiving balls giving them an equal chance to fly away. The solution must be that dropping two balls is not one event, but two. And on the far side, two corresponding results occur. In other words, one ball is dropped, then another ball is dropped, and one ball rises from the first event followed quickly by the second ball from the second event. Two balls is two events happening at two different moments in tim
e. Before the furthest out ball can fall, all inner balls must be out of the way. In fact it is quite similar to how we cause traffic jams on unobstructed highways, and why the interval lights on on-ramps keep traffic flowing. Explore the oxymoronic concept of “Moving Jams” if you want to learn more about traffic psychophysics.
So back on task. When two carts are used on the track, basic applications of F=ma can be explored where one or both carts are moving in various combinations of speed and direction simulating head-on collisions and rear-end collisions. The spring plunger softens the impacts while preserving the result. And the inquiry can run from the carts to the graphs through prediction, or take the inference route where the graph is interpreted to hypothesize the nature of the collision.I could imagine a forensics presentation reenacting an accident using the Motion Encoder System from data graphs generated during the crime scene investigation.
Collisions can also be used to inspect dampeners such as those in shoe insoles. By inserting the insole between the spring plunger on the cart at the bottom of the inclined track, the rebound of the sensor cart can measure the difference between various insole’s ability to absorb shock.
And yet another tangent of exploration deals with seatbelt use. When turned loose with the track, I noticed a student place her iPhone on the cart. The iPhone was running a seismograph app, and the student was playing the with the “look” of an impact as measured by a “third party” along for the ride. If the iPhone was held in place, the majority of the impact force was consumed by the spring. If the iPhone could slide off the cart, a much stronger impulse was recorded when the iPhone eventually hit something with less elasticity than the spring cart.
In the end Vernier has again offered teachers a powerful tool that provides students with the ability to explore the intricacies of motion, this time with an arms-length of track using a hand-sized cart measuring at the resolution of finger dexterity. In other words, the Vernier Motion Encoder System makes motion personal.
The Vernier Motion Encoder System marks a significant shift in the science teacher’s ability to transition between the conceptual, formula-based physics of motion to the “real world” application of those concepts and formulas—and here’s the big news—without the need for disclaimers explaining away anomalous data, inconsistent graphs, and the general background noise of low resolution measurements.
By Guest Blogger
Posted on 2014-09-25
For the past 15 months, a four-letter acronym has been on the tip of science educators’ tongues: NGSS, the Next Generation Science Standards. Whether you personally are or your state board of education is “in favor of,” or “opposed to,” or you are simply “engaged with” the NGSS, there is no doubt that their release has been scrutinized in the media and intensively discussed within the science education community; it is an exciting time for science education.
Crosscutting concepts, disciplinary core ideas, science and engineering practices, performance expectations, and assessment boundaries are all important aspects of the curricular process that science educators should consider while planning curriculums, units, and daily lessons. Considering the information the document contains, it is fair to say that the NGSS covers the “what” of teaching—the content students should know and understand—and up to a point, the “why” has been incorporated into the architecture, which used the learning progressions from A Framework for K–12 Science Education to design the performance expectations.
NGSS does not mention the “how” or method by which these core ideas, crosscutting concepts, and practices should be taught. An online search of the NGSS for the keywords “teaching” and “pedagogy” returned no hits for either. However, if we review the Framework, it has some valuable points to remember and continue to practice in our classrooms every day to engage students in learning. The Framework states, “[I]nstruction refers to methods of teaching and the learning activities used to help students master the content and objectives specified by a curriculum. Instruction encompasses the activities of both teachers and students. It can be carried out by a variety of pedagogical techniques, sequences of activities, and ordering of topics” (NRC 2012, p. 250). The overarching point of this quote connects with the “how” or method a teacher selects to engage students and assist them in discovering the content, concepts, and practices outlined in the NGSS. These decisions are not as clearly spelled out and require experience, skill, and creativity in selection.
In recent years, there has been discussion, discourse, and debate about direct instruction versus inquiry, which are on opposite ends of the spectrum. This debate has produced research results on both sides of the topic (some of which are published by the National Academy of Sciences, the publisher of the Framework and the NGSS). Furthermore, current generalized approaches in the educational arena too often bleed into the science area and focus on remediation, intervention, and test preparation skills, with little or no direct relationship to how students learn science.
In developing the Framework, the Committee on a Conceptual Framework for New K–12 Science Education Standards was not charged with addressing instruction, but rather content. However, they still felt the need to incorporate the chapter titled “implementation,” which discusses instruction. They quickly pointed out that they were not making formal recommendations, but understood the “[s]tandards provide a vision for teaching and learning, but the vision cannot be realized unless the standards permeate the education system and guide curriculum, instruction, teacher preparation and professional development, and student assessment” (NRC 2012, p. 241). So the area of instruction becomes the question of “how” and thus becomes personal to each teacher in each classroom each day. Decisions of “how” or what teaching methods to select are at the intersection of general educational understanding, content knowledge, and knowledge of how the students in an individual class will best learn. Some call the intersection of these three aspects pedagogical content knowledge (PCK). Applied PCK is at the heart of decision-making in the moment; it is “the art of teaching.” Teachers need to take the individual components within PCK, combine them with their own passion and energy for learning and teaching, and encourage students to engage in the learning process. No two classes will be the same, no two lessons will follow the exact path, and no two students will arrive at the same outcome at the same moment. Each of these experiences for the students, class, and teacher will be an individual discovery. As the American poet and teacher Mark Van Doren stated, “The art of teaching is the art of assisting discovery”—and I contend the ultimate answer to the question of “how.”
My certificate from the state of Pennsylvania certifies me “to practice the art of teaching and render services” in my certificated areas. I support and believe in the efficacy and importance of the NGSS, the focus they bring to what students should know and understand, as well as the explicit need to integrate the three dimensions within the classroom lessons. However, like each of you, I am a teacher who knows my students and needs to make informed decisions about how to best engage them in the instruction of the content presented in the standards. In the end, it is important to remember that we need to know about the content and resources available, as well as make decisions that will best bring that content alive for our students. This intersection among content, an understanding of education, and knowledge of our students is where we must all practice the art of teaching and help our students engage in discovery.
Christine Anne Royce, a professor of education at Shippensburg University, where she also serves as department chair. For the past two years, she also has codirected the Master of Arts in Teaching in Science Education program and focuses on the integration of science and literacy for her research area. Royce earned an EdD in science education from Temple University and has taught science at all levels. She has served on the NSTA Board and Council. Email her at caroyce@aol.com or follow her on twitter @caroyce.
Editor’s Note
This article was originally published in the September issue of NSTA Reports, the member newspaper of the National Science Teachers Association (NSTA). Visit the NGSS@NSTA Hub at http://www.nsta.org/ngss to access NSTA’s growing collection of NGSS resources.
Follow NSTA
![]() |
![]() |
![]() |
![]() |
For the past 15 months, a four-letter acronym has been on the tip of science educators’ tongues: NGSS, the Next Generation Science Standards.